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CH-5232 Villigen PSI, Switzerland
cMax-Planck-Institut für Physik (Werner-Heisenberg-Institut)

D-80805 München, Germany
dFachbereich Physik, Bergische Universität Wuppertal

D-42097 Wuppertal, Germany

E-mail: axel@post.kek.jp, Ansgar.Denner@psi.ch, dittmair@mppmu.mpg.de,

mmweber@buffalo.edu

Abstract: The radiative corrections of the strong and electroweak interactions are calcu-

lated for the Higgs-boson decays H → WW/ZZ → 4f with semileptonic or hadronic four-

fermion final states in next-to-leading order. This calculation is improved by higher-order

corrections originating from heavy-Higgs-boson effects and photonic final-state radiation

off charged leptons. The W- and Z-boson resonances are treated within the complex-mass

scheme, i.e. without any resonance expansion or on-shell approximation. The calculation

essentially follows our previous study of purely leptonic final states. The electroweak cor-

rections are similar for all four-fermion final states; for integrated quantities they amount

to some per cent and increase with growing Higgs-boson mass MH, reaching 7–8% at

MH ∼ 500GeV. For distributions, the corrections are somewhat larger and, in general,

distort the shapes. Among the QCD corrections, which include corrections to interference

contributions of the Born diagrams, only the corrections to the squared Born diagrams turn

out to be relevant. These contributions can be attributed to the gauge-boson decays, i.e.

they approximately amount to αs/π for semileptonic final states and 2αs/π for hadronic

final states. The discussed corrections have been implemented in the Monte Carlo event

generator Prophecy4f.∗
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1. Introduction

The startup of the Large Hadron Collider (LHC) in 2007 will open up a new era in particle

physics. One of the main tasks of the LHC will be the detection and the study of the Higgs

boson. If it is heavier than 140GeV and behaves as predicted by the Standard Model (SM),

it decays predominantly into gauge-boson pairs and subsequently into four light fermions.

From a Higgs-boson mass MH of about 130GeV up to the Z-boson-pair threshold 2MZ,

the decay signature H → WW∗ → 2 leptons + missing pT [1] has the highest discovery

potential for the Higgs boson at the LHC [2]. For higher Higgs-boson masses, the leading

role is taken over by the “gold-plated” channel H → ZZ → 4 leptons, which will allow

for the most accurate measurement of MH above 130GeV [3]. More details and recent

developments concerning Higgs-boson studies at the LHC can be found in the literature

[4, 5]. At a future e+e− linear collider [6], the decays H → 4f will enable measurements of

the H → WW/ZZ branching ratios at the level of a few to 10% [7].

At the LHC, owing to the huge background of strongly interacting particles, the most

important decay modes in H → WW/ZZ → 4f are those with leptons in the final state.

Therefore, most analyses are based on them. However, also final states involving quarks

can be useful owing to their larger branching fractions. For decays involving intermediate

W bosons these provide better kinematical information since they involve less neutrinos.

For instance, it has been found that in the vector-boson-fusion channel the decays H →
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WW → l±νjj can provide complementary evidence in the intermediate Higgs-mass range

140GeV < MH < 200GeV [2, 8, 9] and constitute a good potential discovery channel in the

medium-high Higgs-mass range MH & 300GeV [4]. At a linear collider, the hadronic and

semileptonic final states are even more important since they allow for a full reconstruction

of the Higgs-boson decay H → WW [10].

A kinematical reconstruction of the Higgs-boson decays H → WW → 4f and the

suppression of the corresponding backgrounds requires the study of distributions and the

use of cuts defined from the kinematics of the decay fermions. In addition, the verification

of the spin and of the CP properties of the Higgs boson relies on the study of angular,

energy, and invariant-mass distributions [11]. These tasks require a Monte Carlo generator

for H → WW/ZZ → 4f . Since the effects of radiative corrections, in particular real-

photon or gluon radiation, are important, a Monte Carlo generator including all relevant

corrections is needed.

The progress in the theoretical description of the decays of a SM Higgs boson into W- or

Z-boson pairs has, for instance, been summarized in ref. [12]. Until recently, calculations for

off-shell vector bosons were only available in lowest order [13], and radiative corrections were

known only in narrow-width approximation (NWA) [14], i.e. for on-shell W and Z bosons.

In this case, also leading two-loop corrections enhanced by powers of the top-quark mass

[15] or of the Higgs-boson mass [16] have been calculated. However, near and below the

gauge-boson-pair thresholds the NWA is not applicable, so that only the lowest-order results

existed in this MH range.

In a recent paper [12] we have presented results for the complete electroweak (EW)

O(α) corrections including some higher-order improvements to the Higgs-boson decays

H → WW/ZZ → 4 leptons. First results of this calculation had already been presented

at the RADCOR05 conference [17]. At this conference also progress on an independent

calculation of the electromagnetic corrections to H → ZZ → 4 leptons has been reported by

Carloni Calame et al. [18]. The analytic results demonstrated in ref. [12] are also valid for

quarks in the final state. In this paper we supplement this calculation by the corresponding

QCD corrections. We introduce a classification of the QCD corrections and describe their

calculation. The QCD corrections have been implemented into the Monte Carlo generator

Prophecy4f, and numerical results have been produced. These include the partial widths

for various semileptonic and hadronic channels as well as different invariant-mass and

angular distributions for semileptonic final states.

The paper is organized as follows: in section 2 we describe the setup of our calculation.

Section 3 contains a classification of the QCD corrections and provides analytic results for

the virtual and real QCD corrections. Numerical results are presented in section 4, and

our conclusions are given in section 5.

2. Setup of the calculation

We consider the processes

H(p) −→ f1(k1, σ1) + f̄2(k2, σ2) + f3(k3, σ3) + f̄4(k4, σ4) + [γ/g(k, λ)], (2.1)
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where fi stands for any lepton, l = e, µ, τ, νe, νµ, ντ , or for any quark of the first two gen-

erations, q = d,u, s, c. We do not include final states with bottom or top quarks. The

momenta and helicities of the external particles are indicated in parentheses. The helici-

ties take the values σi = ±1/2, but we often use only the sign to indicate the helicity. The

masses of the external fermions are neglected whenever possible, i.e. everywhere but in the

mass-singular logarithms. We always sum over the four light quarks of the first two gener-

ations in the final state and set the CKM matrix to the unit matrix. This approximation

ignores quark mixing with the third generation, which is, however, negligible.

The calculation of the EW corrections has already been described in ref. [12], where

results for purely leptonic final states have been discussed. Here we briefly repeat the

salient features of the evaluation of virtual one-loop and real-photonic corrections.

The calculation of the one-loop diagrams has been performed in the conventional

’t Hooft–Feynman gauge and in the background-field formalism using the conventions of

refs. [19] and [20], respectively.

For the implementation of the finite widths of the gauge bosons we use the complex-

mass scheme, which was introduced in ref. [21] for lowest-order calculations and generalized

to the one-loop level in ref. [22]. In this approach the W- and Z-boson masses are consis-

tently considered as complex quantities, defined as the locations of the propagator poles in

the complex plane. The scheme fully respects all relations that follow from gauge invari-

ance. A brief description of this scheme can also be found in ref. [23].

The amplitudes have been generated with FeynArts, using the two independent

versions 1 and 3, as described in refs. [24] and [25], respectively. The algebraic evaluation

has been performed in two completely independent ways. One calculation is based on an

in-house program written in Mathematica, the other has been completed with the help of

FormCalc [26]. The amplitudes are expressed in terms of standard matrix elements and

coefficients, which contain the tensor integrals, as described in the appendix of ref. [27].

The tensor integrals are evaluated as in the calculation of the corrections to e+e− → 4f

[22, 28]. They are recursively reduced to master integrals at the numerical level. The scalar

master integrals are evaluated for complex masses using the methods and results of ref. [29].

UV divergences are regulated dimensionally and IR divergences with an infinitesimal pho-

ton mass. Tensor and scalar 5-point functions are directly expressed in terms of 4-point

integrals [30]. Tensor 4-point and 3-point integrals are reduced to scalar integrals with the

Passarino–Veltman algorithm [31] as long as no small Gram determinant appears in the

reduction. If small Gram determinants occur, two alternative schemes are applied [32].

One method makes use of expansions of the tensor coefficients about the limit of vanishing

Gram determinants and possibly other kinematical determinants. In the second, alterna-

tive method we evaluate a specific tensor coefficient, the integrand of which is logarithmic

in Feynman parametrization, by numerical integration. Then the remaining coefficients

as well as the standard scalar integral are algebraically derived from this coefficient. The

results of the two different codes, based on the different methods described above are in

good numerical agreement.

Since corrections due to the self-interaction of the Higgs boson become important for

large Higgs-boson masses, we have included the dominant two-loop corrections to the decay

– 3 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
0

H

V

V

fa

f̄b

fc

f̄d

H

V ′

V ′

fa

f̄b

fc

f̄d

Figure 1: Possible lowest-order diagrams for H → 4f where V, V ′ = W, Z.

(A) (B)

Figure 2: Types of cut diagrams contributing in lowest order.

H → V V proportional to G2
µM4

H in the large-Higgs-mass limit which were calculated in

ref. [16].

The matrix elements for the real-photonic corrections are evaluated using the Weyl–

van der Waerden spinor technique as formulated in ref. [33] and have been checked against

results obtained with Madgraph [34]. The soft and collinear singularities are treated

both in the dipole subtraction method following ref. [35] and in the phase-space slicing

method following ref. [36]. For the calculation of non-collinear-safe observables we use the

extension of the subtraction method introduced in ref. [37]. Final-state radiation beyond

O(α) is included at the leading-logarithmic level using the structure functions given in

ref. [38] (see also references therein).

The phase-space integration is performed with Monte Carlo techniques. Prophecy4f

employs a multi-channel Monte Carlo generator [39] similar to the one implemented in

RacoonWW [21] and Cofferγγ [37, 40]. Our second code uses the adaptive integration

program VEGAS [41].

3. QCD corrections for H → 2q2l and H → 4q

3.1 Classification

A proper classification of QCD corrections is achieved upon considering possible contribu-

tions to the squared lowest-order amplitude. The amplitude itself receives contributions

from one of the two tree diagrams shown in figure 1 or from both. Thus, the square of this

amplitude receives contributions from cut diagrams of the types depicted in figure 2. Type
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(a) (b)

(c) (d)

Figure 3: Categories of cut diagrams contributing to the QCD corrections.

(A) corresponds to the squares of each of the Born diagrams, type (B) to their interference

if two Born diagrams exist.

After this preliminary consideration we define four different categories of QCD correc-

tions. Examples of cut diagrams belonging to these categories are shown in figure 3, the

corresponding virtual QCD correction diagrams are depicted in figure 4.

(a) QCD corrections to gauge-boson decays comprise all cut diagrams resulting from

diagram (A) of figure 2 by adding one additional gluon. Cut diagrams in which the

gluon does not cross the cut correspond to virtual one-loop corrections, the one where

the gluon crosses the cut correspond to real-gluon radiation. Note that cut diagrams

in which the gluon connects the two closed quark lines identically vanish, because

their colour structure is proportional to Tr(λh)Tr(λh) = 0, where λh is a Gell-Mann

matrix. Thus, the only relevant one-loop diagrams in this category are gluonic vertex

corrections to a weak-boson decay, as illustrated in the first diagram of figure 4; the

real corrections are induced by the corresponding gluon bremsstrahlung diagrams.

If a weak-boson decay is fully integrated over its decay angles, the resulting QCD

correction of the considered type simply reduces to the well-known factor αs/π for a

hadronically decaying vector boson.

(b) QCD corrections to interferences comprise all cut diagrams resulting from diagram

(B) of figure 2 by adding one additional gluon, analogously to the previous category.

Relevant one-loop diagrams are, thus, vertex corrections or pentagon diagrams, as

illustrated in the first two diagrams of figure 4.

(c) Corrections from intermediate qq̄g∗ states are induced by loop diagrams exemplified

by the third graph in figure 4. The remaining graphs are obtained by shifting the

gluon to different positions at the same quark line and by interchanging the role of the
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(b)
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H

q

q
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Figure 4: Basic diagrams contributing to the virtual QCD corrections for H → 4f where V = W, Z

and q = d, u, s, c, b, t. The categories of QCD corrections, (a)–(d), to which the diagrams contribute

are indicated.

two quark lines. Thus, the diagrams comprise not only box diagrams but also vertex

diagrams. They do not interfere with Born diagrams with the same fermion-number

flow because of the colour structure, i.e. in O(αs) they only contribute if two Born

diagrams exist.

Owing to the intermediate qq̄g∗ states, the squared diagrams of this category actually

correspond to (collinear-singular) real NLO QCD corrections to the loop-induced

decay H → qq̄g, where q is a massless quark. Here we consider only the interference

contributions of the loop diagrams of this category with the lowest-order diagrams

for the decay H → V V → 4q, resulting in a UV and IR (soft and collinear) finite

correction.

(d) Corrections from intermediate g∗g∗ states are induced by diagrams exemplified by

the fourth graph in figure 4. There are precisely two graphs with opposite fermion-

number flow in the loop. Again, owing to the colour structure (see also below), these

diagrams do not interfere with Born diagrams with the same fermion-number flow,

i.e. the existence of two Born diagrams is needed.

Owing to the intermediate g∗g∗ states, the squared diagrams of this category actually

correspond to (collinear-singular) real NNLO QCD corrections to the loop-induced

decay H → gg. The considered interference contributions of the loop diagrams of

this category with the lowest-order diagrams for the decay H → V V → 4q, however,

again yield a UV and IR (soft and collinear) finite correction.

From the classification, it is clear that category (a) exists for all final states involving

– 6 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
0

quarks, while categories (b), (c), and (d) are only relevant for the hadronic decays H → qq̄qq̄

and H → qq̄q′q̄′, where q and q′ are weak-isospin partners. Categories (a), (b), and (c)

give rise to contributions to the decay widths that are proportional to α3αs, while type (d)

yields a contribution proportional to α2α2
s .

We do not consider the process H → 4 jets in general but only the contributions

via virtual EW gauge-boson pairs, i.e. we assume that the gauge-boson resonances are

isolated by experimental cuts. For the more inclusive decay H → 4 jets, also diagrams

without intermediate EW gauge bosons, where the Higgs boson couples to gluons via

heavy-quark loops, become important. Using an effective Hgg coupling, the calculation of

the corresponding QCD one-loop matrix elements has been described in ref. [42], but the

full NLO QCD prediction for H → 4 jets including these effects is not yet available.

3.2 Virtual corrections

In the evaluation of the one-loop QCD diagrams, which are illustrated in figure 4, the

fermion spinor chains are separated from the rest of the amplitude by introducing 52

standard matrix elements M̂abcd,στ
i , as defined in eq. (3.2) of ref. [12], where the indices

σ and τ indicate the chiralities in the spinor chains of the fermion pairs faf̄b and fcf̄d,

respectively. Furthermore, the colour structure is extracted by defining the colour operators

Cabcd
1 = δcacb

⊗ δcccd
, Cabcd

2 =
1

4CF
λh

cacb
⊗ λh

cccd
=

3

16
λh

cacb
⊗ λh

cccd
(3.1)

with the Gell-Mann matrices λh, the colour index h of the gluon, and the colour indices

ca,b,c,d of the quarks. For external leptons the corresponding colour index trivially takes

only one value, and the operator C2, of course, appears only for four-quark final states.

Using this notation, the generic lowest-order amplitude in colour space reads

AV V,σaσbσcσd

0,cacbcccd
(ka, kb, kc, kd) = Cabcd

1 MV V,σaσbσcσd

0 (ka, kb, kc, kd), (3.2)

where MV V,σaσbσcσd

0 is the colour-stripped generic lowest-order amplitude defined in

eq. (2.7) of ref. [12]. Obviously, this notation generalizes to the generic EW one-loop

amplitudes (i.e. without gluon exchange) introduced in eq. (3.3) of ref. [12],1

AV V,σaσbσcσd

EW,cacbcccd
= Cabcd

1 MV V,σaσbσcσd

EW = Cabcd
1

13
∑

i=1

F abcd,σaσc

EW,i M̂abcd,σaσc

i δσa,−σb
δσc,−σd

, (3.3)

where M̂abcd,σaσc

i denote the standard matrix elements and F abcd,σaσc

EW,i are Lorentz-invariant

coefficient functions. In the generic amplitudes the superscript “V V ” indicates the common

fermion-number flow, which corresponds to the decays V → faf̄b and V → fcf̄d. The one-

loop QCD amplitude, which involves gluon exchange, receives contributions from both

1We note that the generic colour-stripped EW one-loop amplitude M
V V,σaσbσcσd

EW
was denoted M

abcd,στ
1

in eq. (3.3) of ref. [12].
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colour operators; in colour space we define

AV V,σaσbσcσd

QCD,cacbcccd
=

2
∑

j=1

Cabcd
j MV V,σaσbσcσd

QCD,j ,

MV V,σaσbσcσd

QCD,j =
13
∑

i=1

F abcd,σaσc

QCD,ji M̂abcd,σaσc

i δσa,−σb
δσc,−σd

, (3.4)

where the MV V,σaσbσcσd

QCD,j are colour-stripped amplitudes.

From the generic matrix elements AV V,σaσbσcσd
n,cacbcccd

(n = 0, 1) the matrix elements

Aσaσbσcσd
n,cacbcccd

for the specific processes are constructed as in eqs. (2.11)–(2.14) of ref. [12].

The index n = 1 collectively represents the sum EW + QCD of EW and QCD one-loop

contributions. We denote different fermions by f and F , and their weak-isospin partners

by f ′ and F ′ (f 6= F,F ′). For purely hadronic final states the quarks are denoted by q and

their weak-isospin partners by q′. Thus, we obtain:

• H → f f̄F F̄ :

Aσ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4) = AZZ,σ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4), (3.5)

• H → f f̄ ′FF̄ ′:

Aσ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4) = AWW,σ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4), (3.6)

• H → qq̄qq̄:

Aσ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4) = AZZ,σ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4)

−AZZ,σ1σ4σ3σ2
n,c1c4c3c2

(k1, k4, k3, k2), (3.7)

• H → qq̄q′q̄′:

Aσ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4) = AZZ,σ1σ2σ3σ4
n,c1c2c3c4

(k1, k2, k3, k4)

−AWW,σ1σ4σ3σ2
n,c1c4c3c2

(k1, k4, k3, k2). (3.8)

The relative signs between contributions of the basic subamplitudes to the full matrix

elements account for the sign changes resulting from interchanging external fermion lines.

Since the lowest-order amplitudes only involve the colour operators C1234
1 and C1432

1 ,

the following colour sums appear in the calculation of squared lowest-order amplitudes and

of interferences between one-loop and lowest-order matrix elements:

X
(A)
1 =

∑

{ci}

(Cabcd ∗
1 Cabcd

1 ) = N c
fa

N c
fc

, X
(A)
2 =

∑

{ci}

(Cabcd ∗
1 Cabcd

2 ) = 0,

X
(B)
1 =

∑

{ci}

(Cabcd ∗
1 Cadcb

1 ) = N c
fa

, X
(B)
2 =

∑

{ci}

(Cabcd ∗
1 Cadcb

2 ) = N c
fa

, (3.9)
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where
∑

{ci}
stands for the sum over the colour indices ca, cb, cc, cd, and N c

f is the colour

factor for a fermion f , which is 1 for leptons and 3 for quarks.

Squared Born diagrams, as illustrated in type (A) of figure 1, are proportional to X
(A)
1 ,

lowest-order interference diagrams of type (B) are proportional to X
(B)
1 . The situation

is analogous for all one-loop diagrams without gluons. By definition, category (a) of the

gluonic diagrams comprises all one-loop QCD corrections proportional to X
(A)
1 . In category

(b), the vertex corrections are proportional to X
(B)
1 and the pentagons to X

(B)
2 . Categories

(c) and (d) receive only contributions from X
(B)
2 ; interferences of one-loop diagrams like

(c) and (d) in figure 4 with Born diagrams of the same fermion-number flow vanish because

of X
(A)
2 = 0.

Finally, we obtain the following for the one-loop corrections to the squared matrix

elements:

• H → f f̄F F̄ :

∑

{ci}

2Re
{

Aσ1σ2σ3σ4 ∗
0,c1c2c3c4

Aσ1σ2σ3σ4

1,c1c2c3c4

}

= 2Re
{

N c
fN c

FMZZ,σ1σ2σ3σ4 ∗
0 MZZ,σ1σ2σ3σ4

EW+QCD(a)

}

, (3.10)

• H → f f̄ ′FF̄ ′:

∑

{ci}

2Re
{

Aσ1σ2σ3σ4∗
0,c1c2c3c4

Aσ1σ2σ3σ4

1,c1c2c3c4

}

= 2Re
{

N c
fN c

FMWW,σ1σ2σ3σ4∗
0 MWW,σ1σ2σ3σ4

EW+QCD(a)

}

, (3.11)

• H → qq̄qq̄:

∑

{ci}

2Re
{

Aσ1σ2σ3σ4 ∗
0,c1c2c3c4

Aσ1σ2σ3σ4

1,c1c2c3c4

}

= 2Re
{

MZZ,σ1σ2σ3σ4 ∗
0

[

(N c
q )2 MZZ,σ1σ2σ3σ4

EW+QCD(a) − N c
q MZZ,σ1σ4σ3σ2

EW+QCD(b)+QCD(c)+QCD(d)

]}

+
(

q(k2, σ2) ↔ q(k4, σ4)
)

, (3.12)

• H → qq̄q′q̄′:

∑

{ci}

2Re
{

Aσ1σ2σ3σ4 ∗
0,c1c2c3c4

Aσ1σ2σ3σ4

1,c1c2c3c4

}

= 2Re
{

MZZ,σ1σ2σ3σ4 ∗
0

[

(N c
q )2 MZZ,σ1σ2σ3σ4

EW+QCD(a) − N c
q MWW,σ1σ4σ3σ2

EW+QCD(b)

]

+ MWW,σ1σ4σ3σ2 ∗
0

[

(N c
q )2 MWW,σ1σ4σ3σ2

EW+QCD(a)

− N c
q MZZ,σ1σ2σ3σ4

EW+QCD(b)+QCD(c)+QCD(d)

]}

. (3.13)

Due to the electric charge flow, categories (c) and (d) only exist if there are corresponding

diagrams with intermediate Z bosons. That is why there are no terms MZZ,σ1σ2σ3σ4 ∗
0 ×

MWW,σ1σ4σ3σ2

QCD(c)+QCD(d). Note that in the notation we have suppressed the momentum arguments

which, however, can be trivially restored, because the permutation of momenta ki is the

same as for the polarizations σi in each amplitude.
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3.3 Matrix element for real-gluon emission H → 4fg

The real-gluonic corrections are induced by the process

H(p) −→ f1(k1, σ1) + f̄2(k2, σ2) + f3(k3, σ3) + f̄4(k4, σ4) + g(k, λ), (3.14)

where the momenta and helicities of the external particles are indicated in parentheses.

The matrix elements for this process can be constructed from the matrix elements for

the photon radiation process Mσaσbσcσdλ
γ (Qa, Qb, Qc, Qd, ka, kb, kc, kd, k), which have been

explicitly given in ref. [12]. Here, Qa,b,c,d denote the electric charges of the fermions. The

generic amplitudes read

AV V,σaσbσcσdλ,h
g,cacbcccd

(ka, kb, kc, kd, k) =

gs

e

{

1

2
λh

cacb
δcccd

δfaqMV V,σaσbσcσdλ
γ (1, 1, 0, 0, ka , kb, kc, kd, k)

+
1

2
λh

cccd
δcacb

δfcqMV V,σaσbσcσdλ
γ (0, 0, 1, 1, ka , kb, kc, kd, k)

}

, (3.15)

where gs is the strong coupling constant, and V = Z,W for Z-mediated and W-mediated

decays, respectively. The symbols δfiq are equal to one if fi is a quark and zero otherwise.

From the generic matrix element AV V,σaσbσcσdλ,h
g,cacbcccd

(ka, kb, kc, kd, k) the matrix elements

for the specific processes can be constructed as follows. As above, we denote different

fermions (f 6= F,F ′) by f and F , and their weak-isospin partners by f ′ and F ′, respectively:

• H → f f̄F F̄g:

Aσ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k) = AZZ,σ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k), (3.16)

• H → f f̄ ′FF̄ ′g:

Aσ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k) = AWW,σ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k), (3.17)

• H → qq̄qq̄g:

Aσ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k) = AZZ,σ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k)

−AZZ,σ1σ4σ3σ2λ,h
g,c1c4c3c2

(k1, k4, k3, k2, k), (3.18)

• H → qq̄q′q̄′g:

Aσ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k) = AZZ,σ1σ2σ3σ4λ,h
g,c1c2c3c4

(k1, k2, k3, k4, k)

−AWW,σ1σ4σ3σ2λ,h
g,c1c4c3c2

(k1, k4, k3, k2, k). (3.19)

The relative signs between contributions of the basic subamplitudes to the full matrix

elements account for the sign changes resulting from interchanging external fermion lines.

Squaring the amplitudes and summing over the colour degrees of freedom, we have
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• H → f f̄F F̄g:

∑

{ci},h

∣

∣

∣
Aσ1σ2σ3σ4λ,h

g,c1c2c3c4
(k1, k2, k3, k4, k)

∣

∣

∣

2
=

4

3
N c

fN c
F

αs

α

×
[

δfq

∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (1, 1, 0, 0, k1 , k2, k3, k4, k)
∣

∣

∣

2

+ δFq

∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (0, 0, 1, 1, k1 , k2, k3, k4, k)
∣

∣

∣

2
]

, (3.20)

• H → f f̄ ′FF̄ ′g:

∑

{ci},h

∣

∣

∣
Aσ1σ2σ3σ4λ,h

g,c1c2c3c4
(k1, k2, k3, k4, k)

∣

∣

∣

2
=

4

3
N c

fN c
F

αs

α

×
[

δfq

∣

∣

∣
MWW,σ1σ2σ3σ4λ

γ (1, 1, 0, 0, k1 , k2, k3, k4, k)
∣

∣

∣

2

+ δFq

∣

∣

∣
MWW,σ1σ2σ3σ4λ

γ (0, 0, 1, 1, k1 , k2, k3, k4, k)
∣

∣

∣

2
]

, (3.21)

• H → qq̄qq̄g:

∑

{ci},h

∣

∣

∣
Aσ1σ2σ3σ4λ,h

g,c1c2c3c4
(k1, k2, k3, k4, k)

∣

∣

∣

2
=

4

3
(N c

q )2
αs

α

×
[

∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (1, 1, 0, 0, k1 , k2, k3, k4, k)
∣

∣

∣

2

+
∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (0, 0, 1, 1, k1 , k2, k3, k4, k)
∣

∣

∣

2

+
∣

∣

∣
MZZ,σ1σ4σ3σ2λ

γ (1, 1, 0, 0, k1 , k4, k3, k2, k)
∣

∣

∣

2

+
∣

∣

∣
MZZ,σ1σ4σ3σ2λ

γ (0, 0, 1, 1, k1 , k4, k3, k2, k)
∣

∣

∣

2
]

− 8

3
N c

q

αs

α
Re

[

(

MZZ,σ1σ2σ3σ4λ
γ (1, 1, 0, 0, k1 , k2, k3, k4, k)

+ MZZ,σ1σ2σ3σ4λ
γ (0, 0, 1, 1, k1 , k2, k3, k4, k)

)∗

×
(

MZZ,σ1σ4σ3σ2λ
γ (1, 1, 0, 0, k1 , k4, k3, k2, k)

+ MZZ,σ1σ4σ3σ2λ
γ (0, 0, 1, 1, k1 , k4, k3, k2, k)

)

]

, (3.22)

• H → qq̄q′q̄′g:

∑

{ci},h

∣

∣

∣
Aσ1σ2σ3σ4λ,h

g,c1c2c3c4
(k1, k2, k3, k4, k)

∣

∣

∣

2
=

4

3
(N c

q )2
αs

α
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×
[

∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (1, 1, 0, 0, k1 , k2, k3, k4, k)
∣

∣

∣

2

+
∣

∣

∣
MZZ,σ1σ2σ3σ4λ

γ (0, 0, 1, 1, k1 , k2, k3, k4, k)
∣

∣

∣

2

+
∣

∣

∣
MWW,σ1σ4σ3σ2λ

γ (1, 1, 0, 0, k1 , k4, k3, k2, k)
∣

∣

∣

2

+
∣

∣

∣
MWW,σ1σ4σ3σ2λ

γ (0, 0, 1, 1, k1 , k4, k3, k2, k)
∣

∣

∣

2
]

− 8

3
N c

q

αs

α
Re

[

(

MZZ,σ1σ2σ3σ4λ
γ (1, 1, 0, 0, k1 , k2, k3, k4, k)

+ MZZ,σ1σ2σ3σ4λ
γ (0, 0, 1, 1, k1 , k2, k3, k4, k)

)∗

×
(

MWW,σ1σ4σ3σ2λ
γ (1, 1, 0, 0, k1 , k4, k3, k2, k)

+ MWW,σ1σ4σ3σ2λ
γ (0, 0, 1, 1, k1 , k4, k3, k2, k)

)

]

. (3.23)

The contribution Γg of the radiative decay to the total decay width is given by

Γg =
1

2MH

∫

dΦg

∑

{ci},h

∑

{σi},λ=±1

|Aσ1σ2σ3σ4λ,h
g,c1c2c3c4

|2, (3.24)

where the phase-space integral is defined by

∫

dΦg =

∫

d3k

(2π)32k0

(

4
∏

i=1

∫

d3ki

(2π)32k0
i

)

(2π)4δ

(

p − k −
4

∑

j=1

kj

)

. (3.25)

4. Numerical results

4.1 Setup and input

We use the Gµ scheme, i.e. we define the electromagnetic coupling by αGµ =√
2GµM2

W(1 − M2
W/M2

Z)/π. Our lowest-order results include the O(α)-corrected width

of the gauge bosons. In the QCD corrections we uniformly take a fixed value for

αs = αs(MZ) = 0.1187 everywhere, because the only numerically relevant part (see be-

low) of the QCD correction is the one connected with the hadronic decay of a W or a

Z boson, where the scale is fixed by the intermediate gauge-boson decay. More details

about the setup and all input parameters are provided in ref. [12].

In our approach the final states involve either four fermions (from lowest order and

virtual corrections), four fermions and a photon (from real-photonic corrections), four

fermions and a gluon (from real-gluonic corrections), or four fermions and one or more

photons collinear to an outgoing lepton (from the structure functions describing multi-

photon final-state radiation). In particular there are no events containing both photons

and gluons. Moreover, we only consider semileptonic final states in the distributions.

For these distributions, a photon and gluon recombination is performed as follows. In

events with a real photon, as in ref. [12] the photon is recombined with the (in this sense)
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nearest charged fermion if the invariant mass of the photon–fermion pair is below 5GeV.

This, in particular, implies that all photons collinear to a lepton are recombined with the

corresponding lepton if the recombination is switched on (as always done in the results

of this paper), i.e. the higher-order effects from photonic final-state radiation described

in Section 4.3 of ref. [12] fully cancel out in this case. In the case of real-gluon radiation

we force a 2-jet event. This is achieved by always recombining the two partons of the qqg

system that yield the smallest invariant mass. Invariant masses and angles are then defined

by the 4-momenta of the recombined pair and the remaining partons.

We always sum over the quarks of the first two generations, q = u,d, c, s, and over

the three neutrinos in the final states and we consider the final states eeqq, ννqq, eνqq,

and qqqq. Since we consistently neglect the masses of external fermions and average over

polarizations, we can express the partial widths of these final states as

ΓH→eeqq = 2ΓH→e−e+uū + 2ΓH→e−e+dd̄,

ΓH→ννqq = 6ΓH→νeν̄euū + 6ΓH→νeν̄edd̄,

ΓH→eνqq = 4ΓH→e−ν̄eud̄,

ΓH→qqqq = ΓH→uūcc̄ + ΓH→dd̄ss̄ + 2ΓH→uūss̄ + 2ΓH→ud̄sc̄

+ 2ΓH→ud̄dū + 2ΓH→uūuū + 2ΓH→dd̄dd̄. (4.1)

Note that ΓH→eνqq includes both electrons and positrons in the final state. The partial

widths with muons in the final state can be classified in the same way and are equal

to those with the muons replaced by electrons, because no dependence on the final-state

fermion masses remains for these inclusive quantities.

The results for the partial decay widths in the plots are calculated using 107 Monte

Carlo events, while all other results (decay widths in the table and distribution plots) are

obtained with 5 × 107 events. In the presented results, soft and collinear divergences are

treated with the dipole-subtraction method and have been checked by applying the phase-

space slicing method. For the latter method more Monte Carlo events are needed for an

accuracy at the per-mille level, because the energy and angular cuts in this method have

to be chosen small enough rendering the real corrections and the analytically integrated

soft and collinear singular contribution (which compensate each other) very large. In

both methods it is possible to evaluate the virtual corrections (rendered finite by adding

the soft and collinear singularities from the real corrections) less often than the lowest-

order matrix elements, because the virtual corrections and also their statistical error are

smaller. We evaluate the EW virtual corrections only every 100th time and the virtual

QCD corrections only every 20th time. This procedure reduces the run-time of the program

while maintaining the size of the overall statistical error.

4.2 Results for partial decay widths

In table 1 we show the partial decay widths of the Higgs boson for semileptonic and hadronic

final states for different values of the Higgs-boson mass. We list the lowest-order (LO)

predictions and the predictions including the complete EW O(α) plus O(G2
µM4

H) corrections

and the O(αs) QCD corrections. In addition we give the predictions including only the
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MH[ GeV] 140 170 200

ΓW[ GeV] 2.09052... 2.09054... 2.09055...

ΓZ[ GeV] 2.50278... 2.50287... 2.50292...

H → Γ[MeV] δ[%] Γ[MeV] δ[%] Γ[MeV] δ[%]

eeqq corrected 0.020467(6) 5.1 0.32723(9) 5.7 13.332(2) 7.6

EW 0.019731(5) 1.3 0.31558(7) 2.0 12.863(1) 3.8

QCD 0.020217(5) 3.8 0.32115(7) 3.8 12.858(1) 3.8

LO 0.019481(4) 0.30950(5) 12.389(1)

ννqq corrected 0.12221(4) 5.9 1.9559(6) 6.7 79.69(1) 8.5

EW 0.11784(3) 2.1 1.8873(4) 2.9 76.91(1) 4.8

QCD 0.11982(3) 3.8 1.9025(5) 3.7 76.20(1) 3.8

LO 0.11545(3) 1.8339(4) 73.423(8)

eνqq corrected 0.5977(3) 7.4 53.55(2) 9.9 155.37(4) 8.7

EW 0.5767(2) 3.6 51.71(1) 6.1 149.96(3) 4.9

QCD 0.5775(2) 3.8 50.57(1) 3.8 148.32(3) 3.8

LO 0.5564(2) 48.724(9) 142.91(2)

qqqq corrected 2.0113(8) 10.8 168.73(5) 13.6 590.3(1) 12.1

EW 1.8752(4) 3.3 157.50(2) 6.0 550.47(7) 4.6

QCD 1.9511(7) 7.5 159.83(4) 7.6 566.2(1) 7.6

LO 1.8150(4) 148.59(2) 526.39(5)

Table 1: Partial decay widths ΓH→4f in lowest order (LO), including O(α) and O(G2
µM4

H) EW

corrections, O(αs) QCD corrections, and the sum of EW and QCD corrections (corrected) and

corresponding relative corrections δ for semileptonic and hadronic decay channels and different

Higgs-boson masses.

EW corrections and only the QCD corrections. In all cases we provide also the relative

corrections δ = Γ/Γ0 − 1 in per cent. The statistical errors of the phase-space integration

are given in parentheses. The size of the EW corrections is very similar to the size of

the corresponding corrections for leptonic final states discussed in ref. [12]. Since the QCD

corrections mainly arise from vertex corrections and since we consider the integrated partial

widths, the QCD contribution roughly amounts to αs/π for semileptonic final states and

2αs/π for the hadronic final state. The sum of EW and QCD corrections thus rises to

5–14%.

In figures 5, 6, and 7 we show the partial decay widths as a function of the Higgs-

boson mass for H → eeqq, H → eνqq, and H → qqqq, respectively. The upper plots

show the predictions including both QCD and EW corrections. The lower plots depict

the corrections relative to the lowest order. Besides the EW+QCD corrections, these

plots include the EW and QCD corrections separately, the narrow-width approximation

(NWA) and the improved Born approximation (IBA) as defined in eqs. (7.5)–(7.7) and

eqs. (6.1)–(6.7), respectively, of ref. [12]. We recall that the IBA for the partial decay

widths includes leading effects such as corrections that are enhanced by factors Gµm2
t

or GµM2
H, the Coulomb singularity for W pairs near their on-shell threshold, and the
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Figure 5: Partial decay width for H → eeqq as a function of the Higgs-boson mass. The upper

plots show the absolute prediction including QCD and EW corrections, and the lower plots show the

relative size of the QCD and EW corrections separately, their sum (corrected) and the predictions

of the NWA and the IBA.

QCD correction to hadronically decaying gauge bosons. Apart from these effects, the IBA

contains only one fitted constant for the WW- and ZZ-mediated channels each. Both in the

WW-induced channel and in the ZZ-induced channel the EW corrections are very similar

to the corresponding corrections for leptonic final states [12]. For moderate Higgs-boson

mass, they are positive and below ∼ 4% for decays via Z pairs. For the W-mediated

decays the Coulomb singularity yields a large effect near the WW threshold and the EW

corrections are in the range between 2% and 8% for moderate Higgs-boson mass. For all
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Figure 6: Partial decay width for H → eνqq as a function of the Higgs-boson mass. The individual

curves are defined as in figure 5.

decays the EW corrections reach about 13% near MH = 700GeV. The thresholds for the

on-shell decay of the Higgs boson into W bosons, Z bosons, and top quarks are manifest

in the shape of the corrections. The QCD corrections amount to roughly αs/π ≈ 3.8% for

semileptonic and 2αs/π ≈ 7.6% for hadronic final states and are practically independent of

the Higgs-boson mass. For H → eeqq the agreement between the full result and the NWA

is (accidentally) at the per-mille level sufficiently above the ZZ threshold. For H → eνqq

and H → qqqq the NWA agrees with the full results within 1–2% above threshold. The

IBA describes the full corrections within 2–3% for MH . 400GeV for all final states.
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Figure 7: Partial decay width for H → qqqq as a function of the Higgs-boson mass. The individual

curves are defined as in figure 5.

In section 3.1 we defined a classification of QCD corrections for the four-quark final

states. While only category (a), i.e. QCD corrections to gauge-boson decays, exists for the

final states H → qq̄QQ̄ and H → qq̄′QQ̄′ (q 6= Q,Q′), all categories (a)–(d) contribute to

H → qq̄qq̄ and H → qq̄q′q̄′. Figure 8 shows the relative EW corrections and the subcon-

tributions of the different categories of QCD corrections as a function of the Higgs-boson

mass. The corrections to gauge-boson decays, i.e. category (a), make up practically all of

the QCD part. Note that the contributions (b)–(d) are multiplied by a factor 10 in the

plots. For MH & 2MW, these contributions are completely negligible. In this region they

– 17 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
0

QCD(d)*10
QCD(c)*10
QCD(b)*10

QCD(a)
EW

H → qqqq

MH [GeV]

δ [%]

200190180170160150140130120

20

15

10

5

0

−5

QCD(d)*10
QCD(c)*10
QCD(b)*10

QCD(a)
EW

H → qqqq

MH [GeV]

δ [%]

700600500400300200

20

15

10

5

0

−5

Figure 8: Comparison of the different QCD contributions defined in section 3.1 and the EW

contribution to the corrections to the partial decay width for H → qqqq as a function of the Higgs-

boson mass.

are suppressed by a factor (ΓV /MV )2 with respect to the leading contributions because

they have two propagators less that can become resonant. Below the WW threshold this

suppression becomes smaller but at MH = 120GeV the interference contribution is still

rather small reaching only a few per mille. The largest corrections originate from interme-

diate g∗g∗ states [category (d)], because these corrections are proportional to α2α2
s rather

than to α3αs as all other QCD corrections.

4.3 Invariant-mass distributions

In order to reconstruct the Higgs-decay events and in order to separate signal events from

possible background events, distributions in the invariant mass of fermion pairs resulting

from a W- or Z-boson decay should be investigated. On the l.h.s. of figure 9 we show

the invariant-mass distribution of the qq pair in the decay H → eeqq including QCD and

EW corrections for MH = 170GeV and MH = 200GeV, i.e. for one MH value below and

another above the on-shell threshold at 2MZ for Z-boson pairs. Above the threshold for

the on-shell decay into a Z-boson pair there is a just a resonance around the Z-boson mass.

Below the threshold only one Z boson can become resonant while the other Z boson is

off shell. Hence, in addition to the peak around the Z-boson mass, the qq invariant-mass

distribution shows an enhancement for Mqq < MH − MZ ≈ 80GeV where the e+e− pair

can result from a resonant Z boson.

The complete relative corrections to the distribution in the invariant mass of the qq

pair and also of the e+e− pair are shown on the r.h.s. of figure 9. In addition, the QCD

corrections to the Mqq distribution are plotted separately; they are flat and amount to

roughly 3.8%. Note that Mqq actually is the total hadronic invariant mass resulting from
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Figure 9: Distribution in the invariant mass of the qq pair (l.h.s.) and relative EW+QCD correc-

tions to the distributions in the invariant mass of the ee and qq pairs (r.h.s) in the decay H → eeqq

for MH = 170 GeV and MH = 200 GeV. For the distribution in Mqq the relative QCD corrections

are separately shown.

the H → eeqq decay, since we always recombine the qq̄(g) system to two jets. In a detailed

experimental analysis a jet algorithm should be defined. Then, hard gluons can produce a

separate jet and the QCD corrections need not be flat anymore. For such a study, the jet

algorithm could simply be interfaced to our Monte Carlo program. The EW corrections

reveal the same structure as discussed in the case of leptonic decays [12] shifting the peak

position of the resonance. Close to the resonance and above, the EW corrections can reach
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5−10%, below the resonance they become larger. The dominant effect is of photonic origin,

leading to more pronounced corrections in the case of the leptonic invariant mass Me+e− ,

since the electric-charge factors are larger for leptons than for quarks. The way photons

are treated has a strong impact on the corrections. By performing photon recombination,

as defined in section 4.1, we obtain collinear-safe observables. Thus, the corrections are of

moderate size. However, for non-collinear-safe observables, i.e. if no photon recombination

with leptons were performed, the corrections would be much larger because of mass-singular

corrections proportional to α ln(ml/MH), as discussed in ref. [12].

In figure 10 we show the distribution in the invariant mass of the qq pair and relative

corrections to the distributions in the invariant mass of the eν and qq pairs in the decay

H → eνqq for MH = 140GeV and MH = 170GeV. Similarly to the decay H → eeqq there

is a resonance around the W-boson mass and, for MH < 2MW, an additional enhancement

for Mqq < MH − MW ≈ 60GeV where the eν pair can become resonant. Also the relative

corrections show the same characteristics. The corrections for the Meν distribution are

somewhat smaller than for the Mee distribution in figure 9, since the neutrino does not

radiate photons.

4.4 Angular distributions

Angular distributions can be used to discriminate the Higgs-boson signal from the back-

ground or to study the properties of the Higgs boson. In figure 11 we show the distribution

in the angle between the decay planes of the reconstructed Z bosons in the decay H → eeqq

in the rest frame of the Higgs boson. This angle can, for instance, be used to determine

the parity of the Higgs boson [11]. Since the two jets cannot be distinguished, we show the

distribution in the variable

|cos φ| =
|(khad × k1)(kjet1 × kjet2)|
|khad × k1||kjet1 × kjet2|

, (4.2)

which is symmetric with respect to the interchange of the jet momenta kjet1 and kjet2.

Here the total hadronic momentum khad is equal to the sum of the two jet momenta,

kjet1 + kjet2, because we enforce 2-jet events, and k1 is the momentum of the electron.

For MH = 200GeV, both QCD and EW corrections are positive and about 4%. For

MH = 170GeV, the EW corrections are only about 2%. Both the EW and QCD corrections

to this distribution are flat, in contrast to the EW corrections to the distribution in cos φ(′)

shown in ref. [12] for analogous definitions of angles φ(′) between the two planes defined

by leptonically decaying Z bosons. This difference results from the fact that the sign of

cos φ(′) is only observable in the purely leptonic case.

In the decay H → eνqq, angles between the electron and jets can be used for back-

ground reduction [8]. In figure 12 we show the distribution in the angle between the

electron and the W boson that is reconstructed from the qq pair in the rest frame of the

Higgs boson and the corresponding relative QCD and EW corrections. The plot shows the

well-known property that the electron is predominantly produced in the direction opposite

to the hadronically decaying W boson. The QCD corrections are about 4% and the EW

corrections at the level of 5%. The complete corrections can reach up to 12% depending
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Figure 10: Distribution in the invariant mass of the qq pair (l.h.s.) and relative EW+QCD

corrections to the distributions in the invariant mass of the eν and qq pairs (r.h.s) in the decay

H → eνqq for MH = 140 GeV and MH = 170 GeV. For the distribution in Mqq the relative QCD

corrections are separately shown.

on the value of the Higgs-boson mass. Since the EW corrections depend on the angle they

distort the distribution by a few per cent.

5. Conclusions

The decays of the Standard Model Higgs boson into four fermions via a W-boson or Z-

boson pair lead to experimental signatures at the LHC and at a future e+e− linear collider
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Figure 11: Distribution in the angle between the Z → ee and Z → qq decay planes in the decay

H → eeqq (l.h.s.) and corresponding relative EW and QCD corrections (r.h.s.) for MH = 170 GeV

and MH = 200 GeV.

that are both important for the search for the Higgs boson and for studying its properties.

In order to allow for adequate theoretical predictions for these decays, a Monte Carlo

event generator is needed that properly accounts for the relevant radiative corrections.

Prophecy4f is such an event generator which provides accurate predictions above, in the

vicinity of, and below the WW and ZZ thresholds, owing to the use of the complex-mass

scheme for the treatment of the gauge-boson resonances.

While Prophecy4f originally contained only the electroweak corrections, in this paper

– 22 –



J
H
E
P
0
2
(
2
0
0
7
)
0
8
0

corrected

MH = 140GeV

H → eνqq

cos θeW

dΓ

d cos θeW
[MeV]

10.50−0.5−1

1

0.8

0.6

0.4

0.2

0

EW
QCD

corrected

MH = 140GeV

H → eνqq

cos θeW

δ [%]

10.50−0.5−1

20

15

10

5

0

corrected

MH = 170GeV

H → eνqq

cos θeW

dΓ

d cos θeW
[MeV]

10.50−0.5−1

50

40

30

20

10

0

EW
QCD

corrected

MH = 170GeV

H → eνqq

cos θeW

δ [%]

10.50−0.5−1

20

15

10

5

0

Figure 12: Distribution in the angle between the electron and the W boson reconstructed from the

qq pair (l.h.s.) and corresponding relative EW and QCD corrections (r.h.s.) in the decay H → eνqq

for MH = 140 GeV and MH = 170 GeV.

we have included also the complete O(αs) QCD corrections. This allows to study precise

predictions for all leptonic, semileptonic, and hadronic final states.

The QCD corrections to the partial decay widths are dominated by the corrections to

the gauge-boson decays and roughly given by αs/π ≈ 3.8% for semileptonic and 2αs/π ≈
7.6% for hadronic final states. The electroweak corrections to the partial decay widths

are very similar for leptonic, hadronic, and semileptonic final states. They are positive,

typically amount to some per cent, increase with growing Higgs mass MH, and reach about
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8% at MH ∼ 500GeV. In the on-shell (narrow-width) approximation for the intermediate

gauge bosons, the correction is good within 1–2% of the partial widths for Higgs-boson

masses sufficiently above the corresponding gauge-boson pair threshold, as long as the

lowest-order prediction consistently includes the off-shell effects of the gauge bosons. For

H → WW → 4f the narrow-width approximation fails badly close to the WW threshold,

because the instability of the W bosons significantly influences the Coulomb singularity

near threshold. Only a calculation that keeps the full off-shellness of the W and Z bosons

can describe the threshold regions properly. A simple improved Born approximation for the

partial widths reproduces the full calculation within . 2–3% for Higgs-boson masses below

400GeV. In this regime our complete calculation should have a theoretical uncertainty

below 1%. For larger Higgs-boson masses we expect that unknown two-loop corrections

that are enhanced by GµM2
H deteriorate the accuracy. Finally, for MH & 700GeV it is well

known that perturbative predictions become questionable in general.

We have numerically investigated distributions for semileptonic final states where

collinear photons are recombined and 2-jet events are forced. For angular and invariant-

mass distributions the QCD corrections are flat and reflect the corresponding corrections to

the integrated decay widths. For angular distributions, which can be used for background

reduction or the study of the quantum numbers of the Higgs boson, the electroweak cor-

rections are of the order of 5–10% and, in general, distort the shapes. For invariant-mass

distributions of fermion pairs, which are relevant for the reconstruction of the gauge bosons,

well-known large photonic corrections show up and can exceed 10% depending on the treat-

ment of photon radiation.

This work completes the physics part of the Monte Carlo event generator Prophecy4f

for H → WW/ZZ → 4f . It now includes the complete O(α) electroweak and O(αs) QCD

corrections as well as corrections beyond O(α) originating from heavy-Higgs effects and

final-state photon radiation for all possible 4-fermion final states. Prophecy4f works

at the parton level and generates weighted events; unweighted event generation and an

interface to parton showering will be addressed in the future.
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